

#### Министерства спорта Российской Федерации



#### Федеральное государственное бюджетное учреждение «САНКТ-ПЕТЕРБУРГСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ФИЗИЧЕСКОЙ КУЛЬТУРЫ»

191040, Санкт-Петербург, Лиговский пр, 56, корпус Е,. Тел./факс (812) e-mail: office@spbniifk.ru (<a href="http://www.spbniifk.ru">http://www.spbniifk.ru</a>)
ОКПО 02926925, ОГРН 1027806893751, ИНН/КПП 7813047576/781301001

Утверждаю

Заместитель директора по научной работе
Профессор К.Г. Коротков

2012

Отчет о проведении исследований в рамках научно-исследовательской темы

# «МЕТОДЫ БЕЗДОПИНГОВОГО ПОВЫШЕНИЯ РАБОТОСПОСОБНОСТИ И СОРЕВНОВАТЕЛЬНОЙ ГОТОВНОСТИ СПОРТСМЕНОВ ОЛИМПИЙСКОГО РЕЗЕРВА»

Санкт-Петербург 2012

## Исполнители:

Коротков К.Г. д.т.н., профессор

Чурганов О.А. д.п.н., профессор

Глушков С.И. д.мед.н., профессор

Гаврилова Е.А., д.мед.н., профессор

Орлов Д.А., научн сотр

Фитиченков А.Н. научн сотр

Сверчкова А.В. врач

Михайлова О.П. врач

| Сокращения                                                   | 5    |
|--------------------------------------------------------------|------|
| 1 Введение                                                   | 6    |
| 1.1. Название и описание исследуемого препарата              | 6    |
| 1.2. Обоснование исследования                                | 6    |
| 1.3. Потенциальные риск и польза для участников исследования | 7    |
| 1.4. Информирование испытуемого                              | 8    |
| 2. Цели и задачи исследования                                | 8    |
| 3. Дизайн исследования                                       | 9    |
| 3.1. Исследуемая популяция                                   | 9    |
| 3.2. Тип исследования и схема процедур/стадий исследования.  |      |
| Критерии оценки                                              | 9    |
| 3.3. Рандомизация                                            | 10   |
| 4. Продолжительность участия испытуемого в исследовании      | 10   |
| 5. Включение и исключение испытуемых                         | 10   |
| 5.1. Критерии включения испытуемых в исследование            | 10   |
| 5.2. Критерии исключения испытуемых из исследования          | 10   |
| 5.3. Критерии досрочного выбывания из исследования           | 11   |
| 6. Оценка эффективности                                      | 11   |
| 7. Оценка безопасности                                       | 11   |
| 8. Нежелательные явления                                     | 12   |
| 9. Статистическая обработка данных                           | 12   |
| 10. Контроль качества исследования                           | 13   |
| 11. Регистрация и хранение данных                            | 13   |
| 12. Публикация результатов исследования                      | . 13 |

| 13. Методики                           | 13 |
|----------------------------------------|----|
| 13.1. Метод газоразрядной визуализации | 14 |
| 13.2. Метод Ритмокардиографии          | 15 |
| 13.3. Психологические тесты            | 15 |
| 14. Результаты                         | 17 |
| 14.1. Метод газоразрядной визуализации | 17 |
| 14.2. Метод велоэргометрии             | 26 |
| 14.3. Метод ритмокардиографии          | 29 |
| 14.3. Методы психодиагностики          | 37 |
| 15. Заключения                         | 41 |
| Выводы:                                | 43 |
| Список литературы                      | 44 |

#### Сокращения

БАД - биологически активные добавки

ГРВ – газоразрядная визуализация

НЯ - нежелательное явление

POMS – profile of mood states

СИ – стресс индекс

ЭП – энергетический потенциал

b1,b2 - данные исследования в исходном состоянии

а1,а2 - данные исследования после нагрузки

CV – коэффициент вариацииdX - вариационный размах

HF - высокочастотный спектр дыхательных волнLF - низкочастотный спектр дыхательных волн

NN50count — количество пар последовательных интервалов RR, различающихся более, чем на 50- миллисекунд, полученное за весь период записи

р NN50 (%) – процент NN50 от общего количества последовательных пар интервалов NN (21 по Баевскому)

RMSSD - квадратный корень из суммы квадратов разностей величин последовательных пар интервалов RR

RR ср - среднее значение продолжительности интервала RR

SDNN – стандартное отклонение величин интервалов RR

ТР - общий спектр

V LF - спектр дыхательных волн очень низкой частоты

АД - артериальное давление

АДд - артериальное давление диастолическое

АДдн - артериальное давление диастолическое после нагрузки

АДс - артериальное давление систолическое

АДсн - артериальное давление систолическое после нагрузки

АМо - амплитуда моды

ВПР - вегетативный показатель ритма ИВР - индекс вегетативного равновесия

ИН - индекс напряжения регуляторных систем

Мо - мода

МПК - максимальное поглощение кислорода

ПАПР - показатель адекватности процессов регуляции - показатель активности регуляторных систем

ССС - сердечно- сосудистая системаЧСС - частота сердечных сокращений

ЧССн - частота сердечных сокращений после нагрузки

#### 1 Введение

Плацебо - контролируемые испытания в режиме двойного слепого контроля в соответствии с протоколом CONSORT были проведены на 40 спортсменах группы высшего спортивного мастерства по легкой атлетике в сентябре - октябре 2012 г в Училище Олимпийского Резерва в г С. Петербурге. Проводились замеры показателей функционального состояния до и после интенсивной физической нагрузки (10 мин на велотренажере Tunturi EL-400) в начальной стадии исследования и после месяца употребления питьевой воды различных марок. Также проводились психологические исследования.

#### 1.1. Название и описание исследуемого препарата

Исследуемый препарат – вода питьевая, обработанная в графеновом фильтре (УСВР) торговой марки ООО "Холдинг "Золотая формула" ZF -20. Употребление в качестве питьевой в сравнении с коммерчески доступной питьевой водой. ООО «Холдинг «Золотая формула» бытовые фильтры для очистки пиитьевой воды на основании Сертификата соответствия № C-RU ME96.B.00032 и Nº 77.99.57.369 Санитарно эпидемиологического заключения Д.008645.08.08. Роспотребнадзора. Многочисленные гигиенические и испытания показали высокую токсикологические эффективность очистки воды фильтрами "Золотая формула" ZF -20. В то же время есть все основания предполагать, что вода, обработанная в графеновом фильтре (УСВР) имеет повышенную биологическую активность и способствует повышению жизненного ресурса организма человека и животных.

#### 1.2. Обоснование исследования

Экологическое загрязнение мегаполиса, состояние трубопровода приводят к тому, что состав водопроводной воды не соответствует гигиеническим нормам, а концентрация некоторых вредных веществ во много раз превышает предельно допустимые нормы. В этих условиях актуальным является не только очищение воды от вредных

веществ, но и изучение её влияния на организм. На протяжении 2006-2009 гг. компанией «Золотая Формула» были установлены 131 система доочистки питьевой воды в образовательных учреждениях 138 систем доочистки питьевой воды в учреждениях образования Новгородской области, а так же 75 систем в учреждениях здравоохранения города и области. Контроль качества доочищенной воды по данным Роспотребнадзора по Новгородской области показал существенные улучшения качественных показателей воды после прохождения фильтра ПО следующим параметрам: мутность, содержание железа, остаточный алюминий. Кроме того, заболеваемость вирусным гепатитом А в Новгородской области резко снижается. Если в 2006 году он составлял 60,6 случаев на 100 тысяч жителей, то в 2009 году -5.7 (в РФ -7.3). Уменьшились случаи заболеваемости дизентерией практически в 3 раза: с 17,7 в 2006 году до 6.2 - в 2009 году (в  $P\Phi - 12.2$ ). В дошкольных учреждениях дети стали меньше болеть и пропускать занятия. Этот показатель в Новгородской области ниже среднероссийского на 64,5% (Россия – 12,94 дней, СЗФО – 14,02, Новгородская область – 8,35 в 2009 году). Однако, контролируемые эксперименты на людях не проводились.

На мышах подобные исследования были проведены в 2009 г в «Институте токсикологии» ФМБА России. Проведенные исследования показали, что ежедневное месячное употребление мышами воды **УСВР** очищенной С помощью увеличивает адаптационные возможности организма, в том числе способность к антирадикальной защите. На моделях фармакологических (гексанал), острой гипоксии и физиологических нагрузок (радиальное ускорение, статико-силовая выносливость, динамическая работа – плавание с грузом) были продемонстрированы общие адаптогенные свойства воды: активация центральной нервной системы, улучшение вегетомоторной психомоторной саморегуляции, увеличение физической выносливости и работоспособности экспериментальных животных.

# 1.3. Потенциальные риск и польза для участников исследования

Применение воды, обработанная в графеновом фильтре (УСВР) не представляет потенциального риска. В 2009 г. в ФГУН «Институт ФМБА России. Региональном Токсикологотоксикологии» Информационном «Токси» (Федеральное Гигиеническом центре медико-биологическое агентство Российской Федерации) лабортаории «Nautilus **Environmental**» США были проведены экспериментальные исследования получены И заключения подтверждающие безопасность плане развития отдаленных

неблагоприятных последствий (возможной мутагенности и канцерогенности) и отсутствия токсического влияния на репродуктивную функцию воды очищенной УСВР.

#### 1.4. Информирование испытуемого.

Каждый испытуемый до начала исследования получил информацию относительно исследования, где в доступной для испытуемого форме изложены сведения о характере и целях исследования, дизайне диагностических процедур. Полученные в ходе исследования сведения, идентифицирующие личность испытуемого, сохраняются в тайне и могут быть раскрыты только в пределах, установленных законом.

#### 2. Цели и задачи исследования

*Целью исследования* является подтверждение эффективности использования воды, обработанной в графеновом фильтре, в плане повышения работоспособности, соревновательной готовности, психологической устойчивости, адаптационного потенциала и ускорения восстановления после физических нагрузок.

#### Задачи исследования:

- 1. Оценить влияние применения воды, обработанной графеновом фильтре, в качестве питьевой в течение 30 дней на некоторые показатели функционального состояния сердечно-сосудистой системы высококвалифицированных спортсменов: особенности вегетативной регуляции ритма сердца, аэробные возможности, уровень энергетики скорость восстановления ДО исходного уровня гемодинамических показателей В остром тесте физической нагрузкой.
- 2. Оценить эффективность влияния воды, обработанная в графеновом фильтре при её курсовом назначении в течение 30 дней, на некоторые психологические характеристики спортсменов: психическую силу, соревновательную готовность, тревожность, агрессивность, психоэмоциональное напряжение в покое и в остром тесте с физической нагрузкой.
- 3. Оценить эффективность влияния воды, обработанной в

графеновом фильтре при её курсовом назначении в течение 30 дней, на энергетические показатели спортсменов: уровень стресса и уровень энергетики по параметрам газоразрядной визуализации (ГРВ).

#### 3. Порядок проведения исследования

#### 3.1. Исследуемая популяция

В исследование были включены 40 спортсменов различного возраста, пола и уровня спортивной квалификации, рандомизированные по группам. Отбор проводился в подготовительном периоде тренировочного цикла.

# 3.2. Тип исследования и схема процедур/стадий исследования. Критерии оценки.

Данное исследование является открытым сравнительным рандомизированным исследованием, в котором основные показатели эффективности действия воды оценивались в двух группах: 20 испытуемых - экспериментальная группа (использовали в течение месяца воду, обработанную в графеновом фильтре) и 20 испытуемых — контрольная (использовали в течение месяца коммерчески доступную питьевую воду).

До начала исследования и по его завершении было запланировано проведение сравнительных тестов.

В 1-й и 31-й день после завтрака и 12 часов после последней тренировки проводились: медицинское обследование терапевтом, измерение АД, регистрация ритмокардиограммы покоя, замеры ГРВ показателей, тест Спилбергера-Ханина (соревновательная тревожность), тест POMS. После чего - велоэргометрия со стандартной велоэргометрической нагрузкой и определением МПК, скорости восстановления ЧСС и АД до исходного уровня Затем повторно регистрируется ритмокардиограмма, ГРВ показатели и проводится психологическое тестирование.

#### 3.3. Рандомизация

Использован метод случайного распределения испытуемых на 2 равные и однородные группы по полу, возрасту, уровню спортивной квалификации.

#### 4. Продолжительность участия испытуемого в исследовании

Общая продолжительность исследования составляет 30 дней. За период исследования проведены два цикла измерений.

#### 5. Включение и исключение испытуемых

## 5.1. Критерии включения испытуемых в исследование

- В исследование были включены спортсмены, соответствующие следующим критериям:
- спортсмены в возрасте от 17 до 25 лет, активно занимающиеся спортом и выступающие в соревнованиях, находящиеся в подготовительном периоде тренировочного цикла.
  - сохраненное психическое здоровье.
- способность выполнять процедуры, предусмотренные протоколом исследования.

# 5.2. Критерии исключения испытуемых из исследования

В исследование не включались лица при наличии одного из следующих критериев:

- тяжелые хронические заболевания.
- острые соматические, неврологические и инфекционные заболевания.
- прием медицинских препаратов и БАДов во время эксперимента.
  - отказ испытуемого от участия в исследовании.
- клинически значимые изменения функциональных показателей,
   свидетельствующие о недиагностированном заболевании и необходимости дополнительного обследования.
- клинически выявляемая психическая патология и девиации в сфере психологии личности.

#### 5.3. Критерии досрочного выбывания из исследования.

Спортсмен может быть досрочно исключен из исследования в том случае, если на любом из визитов у него выявлены:

- возникновение любого из состояний, входящих в критерии исключения;
  - нарушение протокола;
- при отказе испытуемого от приема воды или от участия в исследовании.

При проведении второго испытания два спортсмена были исключены из участия в эксперименте в связи с возникновением клинически значимых изменений функциональных показателей, свидетельствующих о заболевании и необходимости лечения. Эта ситуация не повлияла на статистическую значимость обработки данных проведенного исследования.

#### 6. Оценка эффективности

Эффективность применения воды оценивалась по следующим критериям:

- По динамике аэробной производительности (по интегральному показателю мощности аэробного процесса величине максимального потребления кислорода МПК, отражающему общую физическую работоспособность и высшую границу доступного данному организму уровня окислительных процессов), времени восстановления уровня значений гемодинамических показателей (ЧСС и АД) после стандартной велоэргометрической нагрузки.
- По динамике характеристик вегетативной регуляции ритма сердца (временных и спектральных показателей ритмокардиограммы в покое и при нагрузке).
- По динамике ГРВ показателей в покое и при нагрузке.
- По динамике психологических показателей в покое и после нагрузки.
- По динамике изменения индивидуальных достижений спортсменов в выбранном виде спорта при проведении квалификационных испытаний до и после приема воды.

#### 7. Оценка безопасности.

Критерии и сроки оценки безопасности:

• Данные врачебного наблюдения (физикального обследования)

в течение всего периода исследования.

• Динамика контроля функционального состояния (до начала исследования, после его окончания, при необходимости - в процессе приема).

#### 8. Нежелательные явления

Под нежелательным явлением (НЯ) понимаются любые негативные реакции (в том числе клинически значимые изменения, связанные с приемом воды в рекомендуемых дозах).

Побочное явление - любое, нежелательное изменение состояния испытуемого, отличное от состояния пред началом исследования.

Степень выраженности побочных явлений.

Интенсивность выраженности явлений оценивалась следующим образом:

- как незначительное дискомфорт, который не влияет на ежедневную нормальную деятельность;
- как умеренное дискомфорт уменьшает или воздействует на обычную ежедневную деятельность;
- серьезное не дает возможности выполнять обычную ежедневную деятельность.

Информация о НЯ собиралась путем опроса спортсмена, а также при физикальном исследовании и при проведении других исследований.

Никаких НЯ отмечено не было.

# 9. Статистическая обработка данных

Все данные, собранные в ходе исследования, проанализированы с применением описательных и дисперсионных статистических методов. Клинико-функциональные данные и их изменения относительно базового уровня в группах спортсменов проанализированы по Т-тесту Стьюдента и посредством дисперсионного анализа. Для оценки значимости долей (%) в выборках применён метод углового преобразования Фишера.

#### 10. Контроль качества исследования

Все процедуры, действия, регистрация данных и обеспечение экспериментов выполнены в соответствии с протоколом исследования.

#### 11. Регистрация и хранение данных

Прямой доступ к базе данных эксперимента и первичной документации проводимого исследования имеют: организация, ответственная за проведение исследования, аудиторы, инспекторы разрешительных инстанций, Заказчик исследования.

#### 12. Публикация результатов исследования

Результаты данного исследования являются собственностью Заказчика и могут быть опубликованы или доложены на научных конференциях, съездах или симпозиумах только по согласованию с Заказчиком.

#### 13. Методики

На первом этапе исследования проводилось медицинское обследование, измерение артериального давления (АД), тестирование с помощью тестов POMS и Спилбергера-Ханина, исследование ритма сердца (ритмокардиография на компьютерном анализаторе «Кардиометр- МТ» ЗАО «Микард-Лана») и измерение методом ГРВ.

После физикального исследования И ритмокардиографии проводился стресс тест (велоэргометрия) с использованием Стресссистемы General Electric Healthcare Cardiosoft с велоэргометром Bike General Electric Healthcare (производства General Electric США). Проводилось тестирование со ступенчато возрастающей нагрузкой: первая нагрузочная ступень 100 ватт с частотой педалирования 60-65 оборотов в 1 минуту, далее каждые 2 минуты нагрузка увеличивалась на 50 ватт. Каждые 2 минуты измерялось АД. Тестирование субмаксимального проводилось ДО достижения (рассчитывалось автоматически ПО формуле 0,85х(220-возраст спортсмена в годах) (по рекомендациям ВОЗ). После достижения необходимой частоты пульса при нагрузке спортсмен прекращал педалирование и определялась скорость восстановления ЧСС и АД до исходных значений, предшествующих выполнению нагрузки. В период восстановления повторялась ритмография, ГРВ и тест POMS.

По результатам тестирования производился расчет общей физической работоспособности по известной формуле:

PWC 170 = W x 170 - ЧСС покоя / ЧСС нагрузки - ЧСС покоя  $M\Pi K = 2.2 \times PWC 170 + 1070$ 

Второй этап исследования полностью повторял первый и проводился по завершению эксперимента. Он включал в себя медицинское обследование, измерение АД, вариационную пульсометрию, ГРВ метод, тест POMS и тест Спилбергера-Ханина, стресс тест с определением скорости восстановления ЧСС и АД до исходных значений и повторные замеры параметров ритма сердца и ГРВ.

#### 13.1. Метод газоразрядной визуализации

Свечение объектов различной природы в электромагнитных полях высокой напряженности было обнаружено более 200 лет назад и с тех пор постоянно привлекало внимание исследователей литературы можно найти в [1, 2]). Однако только с созданием программно-аппаратных комплексов газоразрядной визуализации (ГРВ) в 1995 году исследование этих свечений получило статус научного направления. С тех пор были детально исследованы физические механизмы формирования свечений [3], серийное производство приборов, созданы комплексы программ для приложений в медицине, биологии, исследовании материалов [4]. Было показано, что характеристики свечения поверхности кожного покрова человека зависят, в первую очередь, от активности вегетативной нервной системы с учетом фактора уровней адаптации [5].

Программно-аппаратные ГРВ биоэлектрографические комплексы нашли практическое применение в следующих основных областях.

В медицине – для оценки состояния вегетативной нервной системы и мониторинга реакций организма в процессе проводимой терапии [6,7,8]. ГРВ комплекс сертифицирован Минздравом РФ в качестве прибора медицинской техники.

В спорте – для оценки уровня соревновательной готовности спортсменов [9,10]. ГРВ комплексы по приказу Государственного

Агентства по физической культуре и спорту устанавливаются в училищах Олимпийского резерва России.

В правоохранительных органах – для оценки уровня стресса у личного состава и у лиц, склонных к противоправным действиям [11].

При исследованиях жидкостей и материалов – для выявления отличия натуральных и синтетических масел [12], оценки качества косметических препаратов [13] и целого ряда других приложений.

В данном исследовании для оценки энергетического потенциала (ЭП) и уровня стрессового фона (СФ) использовался прибор «ГРВ Камера» (ООО «Биотехпрогресс», Санкт-Петербург).

#### 13.2. Метод ритмокардиографии

Ритмокардиография - метод нейрокардиологии, применяемый в космической, авиационной, спортивной, клинической медицине и физиологию. Ритмограмма - индикатор состояния регулирующих систем и адаптационных реакций организма. Ее параметры служат для оценки деятельности сердца и отражают состояние здоровья Ритмокардиограмма -ЭТО графическое изображение последовательного ряда межсистолических интервалов в отрезков прямой линии, эквивалентных по длине продолжительности пауз между сокращениями сердца (цит. По: Миронова Т.Ф. 2007). Одной ИЗ целей записи ритмограммы является проведение экологического мониторинга, где в качестве интегрального показателя состояния окружающей среды выступает функциональное состояние человека. В нашем случае – функциональное состояние спортсмена и его реакция на стандартную физическую нагрузку.

#### 13.3. Психологические тесты

Для оценки ситуативного и личностного психоэмоционального статуса использовался тест POMS и тест Спилбергера-Ханина.

# Tест POMS (Mc Nair D.D., Lorr M., Droppleman L.F. 1992)

Тест POMS в настоящее время является одной из наиболее эффективных методик для оценки психоэмоционального статуса и уровня стресса, признанной во всём мире, в том числе в спорте. Исследования, проведённые в области спортивной психологии,

показали, что спортсменам свойственен особый психологический профиль, который отличается от профиля неспортсменов. Он был назван «профилем айсберга» и он характеризуется низкими баллами уровня напряжения, депрессии, утомлённости, агрессивности, замешательства и высокими значениями показателя психической силы, более высокими, чем у неспортсменов. Для состояния перетренированности характерен «инверсивный профиль айсберга» с низкими уровнями энергии и высокими показателями усталости, депрессии и гнева.

В исследовании использована руссифицированная версия теста, разработанная в СПбНИИФК и состоящая из 58 прилагательных, описывающих различные психоэмоциональные состояния. Каждое прилагательное оценивается испытуемым по пятибальной шкале. По ним выделяется шесть основных факторов, таких как: напряжениетревожность (Т), депрессия-подавленность (D), гнев-агрессивность (A), сила-энергичность (V), усталость-инертность (F), неуверенность замешательство (С).

Фактор Т характеризует состояние тревожности и связанное с ним напряжение скелетных мышц.

Фактор D отражает чувство собственной неполноценности, которое обуславливает возникновение депрессии.

Фактор А показывает антипатию, враждебность по отношению к окружающим, что проявляется гневом, агрессивностью.

Фактор V можно трактовать как состояние энергичности, готовности к действию, психической силы.

Фактор F, напротив, говорит о низкой энергичности, свидетельствует об инертности, усталости испытуемого.

Фактор С указывает на неспособность к концентрации, неуверенность, забывчивость.

Для интегральной оценки настроения используется суммарный показатель (S), который вычислялся по формуле:

$$S=(T+D+A+F+C)$$
 -V, где

T, D, A, F, C, V - бальные оценки соответствующих факторов. КЛЮЧ К ТЕСТУ POMS:

T = (1+8+13+17+22+23+29+36)-19,

D=4+7+11+15+18+20+27+30+31+38+39+42+51+54+55,

A=2+10+14+21+26+28+34+37+41+46+47+50,

V=5+12+16+33+45+49+53+56,

F=3+9+25+35+40+43+58,

C=6+24+32+44+48+52+57

S=(T+D+A+F+C)-V, где цифры — оценки соответствующих пунктов теста (0-4 баллов), T, D, A, F, C, V - бальные оценки факторов

#### Соревновательная тревожность (Ю.Л. Ханин, 1983)

Тревожность определяет индивидуальную чувствительность спортсмена к соревновательному стрессу. Соревновательная тревожность спортсмена измеряется как личностное свойствосостояние. Прямые вопросы- 2, 3, 5, 8, 9, 12, 14, 15. Обратные вопросы- 6,11. За ответ на прямые вопросы варианта А- даётся 1 балл, В- 2 балла и С- 3 балла. За обратные вопросы- А- 3 балла, В- 2 балла, С- 1 балл. Низкой тревожность считается с оценкой менее 10 баллов, очень высокой- более 30 баллов.

#### 14. Результаты

#### 14.1. Метод газоразрядной визуализации

Результаты исследований, усредненные по группам, и их статистическая оценка приведены в Таблицах 1 и 2.

Из представленных данных можно сделать следующие заключения:

- 1. Не выявлено статистически достоверной разницы между данными, полученными в эксперименте и в контроле ни при начальном, ни при последующем тестировании, ни до, а также ни после нагрузки (t-test exper-contr).
- 2. В экспериментальной группе не выявлено статистически достоверной разницы в значениях показателей при начальном и при последующем тестировании ни до, ни после нагрузки (t-test b1-b2 exper и t-test a1-a2 exper).
- 3. В контрольной группе спортсменов отмечено статистически значимое снижение энергетического потенциала (ЭП) в исходном состоянии в процессе тестирования через месяц (t-test b1-b2 contr p < 0.001) при отсутствии значимых изменений после нагрузки.
- 4. Данные пп. 2-3 свидетельствуют о сохранении исходного уровня значений энергетических параметров у спортсменов

экспериментальной группы и уменьшении значений параметров у спортсменов контрольной группы. Уменьшение значений параметров связано с включением спортсменов в активный тренировочный цикл и последующей реакцией организма на нагрузку.

- 5. Значения энергетического потенциала после нагрузки у многих спортсменов оказались выше во втором эксперименте, как в экспериментальной группе (12 человек из 19), так и в контрольной (11 человек из 20) (рис.1,2).
- 6. Анализ энергетического состояния отдельных систем и органов показал наличие существенного превышения значений целого ряда параметров во второй серии экспериментов у спортсменов экспериментальной группы над уровнем значений аналогичных показателей у спортсменов контрольной группы. Исходные данные для анализа приведены в Таблице 3.
- 7. B Таблице 4 наглядно представлена разница значений энергетического потенциала испытуемых экспериментальной и И контрольной групп В первом втором (через месяц) исследованиях. Показано, что через месяц употребления воды, прошедшей через графеновый фильтр произошло существенное увеличение энергетического потенциала ряда органов и систем. Эти результаты представлены в виде графика (рис. 3).

В первом исследовании разница значений параметров в экспериментальной и контрольной группах была незначительной, и для ряда органов и систем принимала отрицательные значения, что указывает на более высокие значения параметров у контрольной группы. Отмеченные различия были недостоверными.

Во втором исследовании у спортсменов экспериментальной группы наблюдалось существенное превышение значений параметров, относящихся к ряду органов и систем над аналогичными у представителей контрольной группы. Это относится к кардио-васкулярной и мочеполовой системам, а также таким органам как: сердце, сосуды, грудные железы, гипоталамус, эпифиз, гипофиз, поджелудочная железа. Надпочечники, позвоночник, сигмовидная кишка, прямая кишка, слепая кишка, восходящая кишка, поперечноободочная кишка, печень, поджелудочная железа, аппендикс, почки.

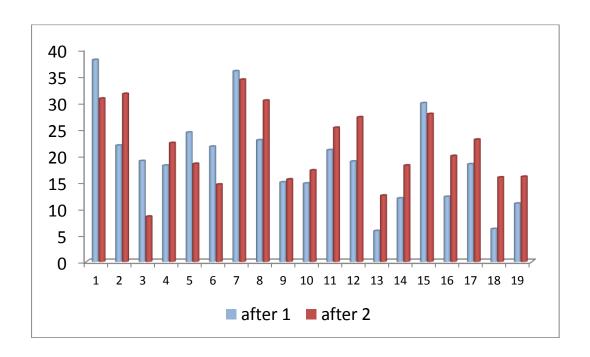



Рис.1 Значения энергетического потенциала 19 спортсменов **экспериментальной группы** после физической нагрузки в первом и втором исследовании.

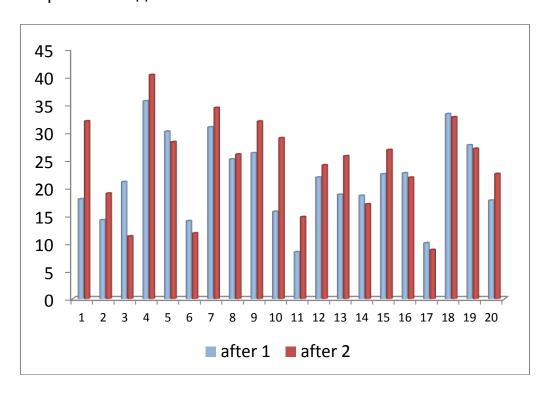



Рис. 2. Значения энергетического потенциала 20 спортсменов контрольной группы после физической нагрузки в первом и втором исследовании.

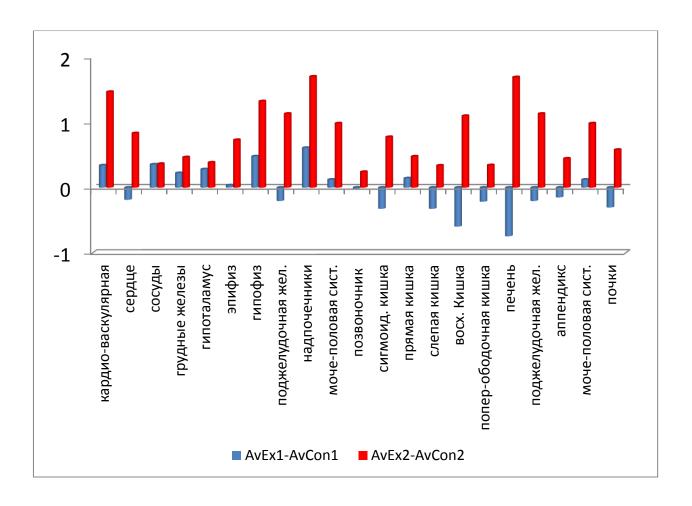



Рис. 3. Разница между значениями показателя энергетического потенциала спортсменов экспериментальной и контрольной групп в первом и втором исследованиях.

Таблица 1. Данные исследования в исходном состоянии в начальном периоде (b1) и через месяц (b2) усредненные по группе.

|       | Exper b1              |         |        | Control b1         |         |        |  |
|-------|-----------------------|---------|--------|--------------------|---------|--------|--|
|       | СИ                    | ЭП      | Баланс | СИ                 | ЭП      | Баланс |  |
| Aver  | 4.2                   | 24.9    | 91.2   | 3.4                | 28.9    | 91.8   |  |
| StDev | 2.6                   | 9.5     | 8.7    | 2.5                | 9.3     | 6.1    |  |
|       | Exper                 | b2      |        | Control b2         |         |        |  |
| Aver  | 5.0                   | 19.6    | 88.8   | 4.4                | 20.5    | 90.7   |  |
| StDev | 2.5                   | 8.6     | 9.2    | 2.3                | 8.1     | 8.2    |  |
|       | t-test b              | 1-b2 ex | per    | t-test b1-b2 contr |         |        |  |
|       | 0.354                 | 0.089   | 0.421  | 0.513              | 0.001   | 0.639  |  |
|       | t-test exper-contr b1 |         |        | t-test e           | xper-co | ntr b2 |  |
|       | 0.35                  | 0.20    | 0.80   | 0.223              | 0.964   | 0.490  |  |

Таблица 2. Данные исследования после нагрузки в начальном периоде (а1) и через месяц (а2) усредненные по группе.

|       | Exper a1              |         |        | Control a1            |       |        |
|-------|-----------------------|---------|--------|-----------------------|-------|--------|
|       | СИ                    | ЭП      | Баланс | СИ                    | ЭП    | Баланс |
| Aver  | 5.2                   | 19.3    | 89.5   | 4.6                   | 21.6  | 88.9   |
| StDev | 2.7                   | 7.9     | 9.7    | 2.6                   | 7.2   | 11.9   |
|       | Exper                 | a2      |        | Control a2            |       |        |
| Aver  | 4.7                   | 21.6    | 91.0   | 3.8                   | 24.3  | 91.3   |
| StDev | 2.9                   | 8.1     | 5.9    | 2.0                   | 7.7   | 10.1   |
|       | t-test a              | 1-a2 ex | per    | t-test a1-a2 contr    |       |        |
|       | 0.641                 | 0.757   | 0.572  | 0.032                 | 0.459 | 0.432  |
|       | t-test exper-contr a1 |         |        | t-test exper-contr a2 |       |        |
|       | 0.529                 | 0.544   | 0.879  | 0.128                 | 0.346 | 0.909  |

Таблица 3. Значения показателя энергетического потенциала отдельных органов и систем, усредненные по группе в первом и втором (через месяц) исследованиях.

|                              | Exp 1 |      | Contr | 1    | Exp 2        |      | Contr | 2    |
|------------------------------|-------|------|-------|------|--------------|------|-------|------|
|                              | Aver  | StD  | Aver  | StD  | Aver         | StD  | Aver  | StD  |
| кардио-                      |       |      |       |      |              |      |       |      |
| васкулярная                  | 4.38  | 2.87 | 4.03  | 3.20 | 5.25         | 3.46 | 3.78  | 2.65 |
| сердце                       | 3.60  | 2.76 | 3.79  | 3.32 | 4.36         | 3.15 | 3.52  | 2.72 |
| сосуды                       | 2.46  | 2.35 | 2.10  | 1.89 | 2.91         | 2.48 | 2.55  | 2.21 |
| трахея                       | 2.51  | 2.28 | 2.51  | 1.52 | 2.25         | 2.59 | 2.38  | 2.18 |
| грудные                      |       |      |       |      |              |      |       |      |
| железы                       | 2.73  | 2.78 | 2.51  | 1.88 | 3.16         | 3.06 | 2.69  | 2.51 |
| гипоталамус                  | 3.47  | 2.43 | 3.18  | 1.87 | 3.64         | 3.20 | 3.26  | 3.03 |
| эпифиз                       | 3.15  | 2.80 | 3.12  | 2.83 | 3.49         | 2.56 | 2.76  | 2.09 |
| гипофиз                      | 3.23  | 2.38 | 2.75  | 2.20 | 4.32         | 3.12 | 3.00  | 2.54 |
| щитовидная                   |       |      |       |      |              |      |       |      |
| жел.                         | 4.71  | 3.20 | 3.89  | 2.54 | 4.53         | 2.58 | 4.65  | 3.27 |
| поджелудочная                | 4.48  | 2.62 | 4.68  | 2.45 | 5.76         | 3.44 | 4.63  | 2.71 |
| жел.                         |       |      |       |      |              |      |       |      |
| надпочечники<br>моче-половая | 4.77  | 2.94 | 4.16  | 2.30 | 5.67         | 3.05 | 3.96  | 2.54 |
| СИСТ.                        | 3.81  | 2.84 | 3.69  | 2.66 | 4.17         | 3.22 | 3.19  | 2.45 |
| позвоночник                  | 3.89  | 2.37 | 3.91  | 3.48 | 3.57         | 2.43 | 3.33  | 2.23 |
| позвоночник                  | 4.85  | 2.82 | 3.82  | 3.39 | 4.42         | 2.26 | 3.64  | 1.81 |
| позвоночник                  | 4.84  | 2.64 | 3.96  | 3.42 | 4.30         | 2.43 | 3.88  | 2.91 |
| позвоночник                  | 3.28  | 2.09 | 2.81  | 2.82 | 3.00         | 2.44 | 3.40  | 2.58 |
| копчик                       | 2.70  | 2.03 | 2.34  | 1.14 | 2.36         | 2.21 | 2.40  | 1.63 |
| нисх. кишка                  | 1.92  | 1.65 | 1.41  | 1.59 | 2.80         | 1.40 | 2.27  | 1.94 |
|                              |       |      |       |      |              |      |       | 1.80 |
| сигмоид.кКишка               | 1.42  | 1.16 | 1.74  | 1.26 | 2.72<br>1.75 | 2.06 | 1.94  |      |
| прямая кишка                 | 1.13  | 1.12 | 0.99  | 0.95 |              | 1.64 | 1.27  | 1.15 |
| слепая кишка                 | 1.62  | 1.59 | 1.95  | 1.69 | 1.77         | 1.72 | 1.43  | 1.09 |
| восх. кишка                  | 1.50  | 1.33 | 2.10  | 1.67 | 2.40         | 1.67 | 1.30  | 1.29 |
| попер-<br>ободочная          |       |      |       |      |              |      |       |      |
| кишка                        | 2.86  | 2.04 | 3.07  | 2.66 | 2.96         | 2.36 | 2.62  | 2.09 |
| 12-п кишка                   | 1.97  | 1.73 | 1.38  | 1.56 | 1.89         | 1.73 | 1.61  | 1.46 |
| подвздошная                  |       |      |       | 1.55 | 1.55         | 11.0 | 1     |      |
| кишка                        | 2.04  | 1.69 | 1.95  | 1.78 | 2.21         | 1.92 | 2.08  | 1.55 |
| тощая кишка                  | 2.04  | 1.97 | 1.58  | 1.27 | 2.12         | 1.59 | 1.93  | 1.56 |

| печень         | 3.12 | 2.45 | 3.87 | 2.39 | 4.80  | 3.88 | 3.10 | 2.44 |
|----------------|------|------|------|------|-------|------|------|------|
| поджелудочная  |      |      |      |      |       |      |      |      |
| жел.           | 4.48 | 2.62 | 4.68 | 2.45 | 5.76  | 3.44 | 4.63 | 2.71 |
|                | 2.83 | 2.05 | 2.25 | 1.54 | 2.78  | 2.20 | 2.01 | 1.40 |
| аппендикс      | 2.03 | 1.72 | 2.18 | 1.88 | 2.30  | 1.95 | 1.86 | 1.55 |
| моче-половая   |      |      |      |      |       |      |      |      |
| сист.          | 3.81 | 2.84 | 3.69 | 2.66 | 4.17  | 3.22 | 3.19 | 2.45 |
| почки          | 3.77 | 2.60 | 4.07 | 2.60 | 4.03  | 2.80 | 3.45 | 2.02 |
| кардио-        |      |      |      |      |       |      |      |      |
| васкулярная    | 4.38 | 2.87 | 4.03 | 3.20 | 5.25  | 3.46 | 3.78 | 2.65 |
| сердце         | 3.60 | 2.76 | 3.79 | 3.32 | 4.36  | 3.15 | 3.52 | 2.72 |
| сосуды         | 2.46 | 2.35 | 2.10 | 1.89 | 2.91  | 2.48 | 2.55 | 2.21 |
| трахея         | 2.51 | 2.28 | 2.51 | 1.52 | 2.25  | 2.59 | 2.38 | 2.18 |
| грудные        |      |      |      |      |       |      |      |      |
| железы         | 2.73 | 2.78 | 2.51 | 1.88 | 3.16  | 3.06 | 2.69 | 2.51 |
| гипоталамус    | 3.47 | 2.43 | 3.18 | 1.87 | 3.64  | 3.20 | 3.26 | 3.03 |
| эпифиз         | 3.15 | 2.80 | 3.12 | 2.83 | 3.49  | 2.56 | 2.76 | 2.09 |
| гипофиз        | 3.23 | 2.38 | 2.75 | 2.20 | 4.32  | 3.12 | 3.00 | 2.54 |
| щитовидная     |      |      |      |      |       |      |      |      |
| жел.           | 4.71 | 3.20 | 3.89 | 2.54 | 4.53  | 2.58 | 4.65 | 3.27 |
| поджелудочная  |      |      |      |      |       |      |      |      |
| жел.           | 4.48 | 2.62 | 4.68 | 2.45 | 5.76  | 3.44 | 4.63 | 2.71 |
| надпочечники   | 4.77 | 2.94 | 4.16 | 2.30 | 5.67  | 3.05 | 3.96 | 2.54 |
| моче-половая   | 0.04 | 0.04 | 2.00 | 0.00 | 4 4 7 | 2.00 | 2.40 | 0.45 |
| СИСТ.          | 3.81 | 2.84 | 3.69 | 2.66 | 4.17  | 3.22 | 3.19 | 2.45 |
| позвоночник    | 3.89 | 2.37 | 3.91 | 3.48 | 3.57  | 2.43 | 3.33 | 2.23 |
| позвоночник    | 4.85 | 2.82 | 3.82 | 3.39 | 4.42  | 2.26 | 3.64 | 1.81 |
| позвоночник    | 4.84 | 2.64 | 3.96 | 3.42 | 4.30  | 2.43 | 3.88 | 2.91 |
| позвоночник    | 3.28 | 2.09 | 2.81 | 2.82 | 3.00  | 2.44 | 3.40 | 2.58 |
| копчик         | 2.70 | 2.03 | 2.34 | 1.14 | 2.36  | 2.21 | 2.40 | 1.63 |
| нисх. кишка    | 1.92 | 1.65 | 1.41 | 1.59 | 2.80  | 1.40 | 2.27 | 1.94 |
| сигмоид. кишка | 1.42 | 1.16 | 1.74 | 1.26 | 2.72  | 2.06 | 1.94 | 1.80 |
| прямая кишка   | 1.13 | 1.12 | 0.99 | 0.95 | 1.75  | 1.64 | 1.27 | 1.15 |
| слепая кишка   | 1.62 | 1.59 | 1.95 | 1.69 | 1.77  | 1.72 | 1.43 | 1.09 |
| восх. кишка    | 1.50 | 1.33 | 2.10 | 1.67 | 2.40  | 1.67 | 1.30 | 1.29 |
| попер-         |      |      |      |      |       |      |      |      |
| ободочная      |      |      |      |      |       |      |      |      |
| кишка          | 2.86 | 2.04 | 3.07 | 2.66 | 2.96  | 2.36 | 2.62 | 2.09 |
| 12-п кишка     | 1.97 | 1.73 | 1.38 | 1.56 | 1.89  | 1.73 | 1.61 | 1.46 |
| подвздошная    | 2.04 | 1.69 | 1.95 | 1.78 | 2.21  | 1.92 | 2.08 | 1.55 |

| кишка         |      |      |      |      |      |      |      |      |
|---------------|------|------|------|------|------|------|------|------|
| тощая кишка   | 2.04 | 1.97 | 1.58 | 1.27 | 2.12 | 1.59 | 1.93 | 1.56 |
| печень        | 3.12 | 2.45 | 3.87 | 2.39 | 4.80 | 3.88 | 3.10 | 2.44 |
| поджелудочная |      |      |      |      |      |      |      |      |
| жел.          | 4.48 | 2.62 | 4.68 | 2.45 | 5.76 | 3.44 | 4.63 | 2.71 |
|               | 2.83 | 2.05 | 2.25 | 1.54 | 2.78 | 2.20 | 2.01 | 1.40 |
| аппендикс     | 2.03 | 1.72 | 2.18 | 1.88 | 2.30 | 1.95 | 1.86 | 1.55 |
| моче-половая  |      |      |      |      |      |      |      |      |
| сист.         | 3.81 | 2.84 | 3.69 | 2.66 | 4.17 | 3.22 | 3.19 | 2.45 |
| почки         | 3.77 | 2.60 | 4.07 | 2.60 | 4.03 | 2.80 | 3.45 | 2.02 |

Таблица 4. Разница в значениях показателя энергетического потенциала между представителями экспериментальной и контрольной групп в первом и втором (через месяц) исследованиях.

|                    | AvEx1 - | AvEx2 - |
|--------------------|---------|---------|
|                    | AvCon1  | AvCon2  |
| кардио-васкулярная | 0.34    | 1.47    |
| сердце             | -0.19   | 0.83    |
| сосуды             | 0.35    | 0.36    |
| грудные железы     | 0.22    | 0.47    |
| гипоталамус        | 0.28    | 0.39    |
| эпифиз             | 0.04    | 0.73    |
| гипофиз            | 0.48    | 1.32    |
| поджелудочная жел. | -0.20   | 1.13    |
| надпочечники       | 0.61    | 1.70    |
| моче-половая сист. | 0.12    | 0.99    |
| позвоночник        | -0.02   | 0.24    |
| сигмоид. кишка     | -0.32   | 0.78    |
| прямая кишка       | 0.14    | 0.48    |
| слепая кишка       | -0.32   | 0.34    |
| восх. Кишка        | -0.60   | 1.10    |
| попер-ободочная    |         |         |
| кишка              | -0.21   | 0.34    |
| печень             | -0.75   | 1.69    |
| поджелудочная жел. | -0.20   | 1.13    |
| аппендикс          | -0.15   | 0.45    |
| моче-половая сист. | 0.12    | 0.99    |
| почки              | -0.30   | 0.58    |

#### 14.2. Метод велоэргометрии

Одним из критериев влияния на состояние спортсменов воды, прошедшей через графенновый фильтр была выбрана реакция организма на физическую нагрузку (по данным показателей гемодинамики до и после выполнения испытуемыми стандартной велоэргометрической нагрузки).

В Таблице 5 представлены средние значения артериального давления, и ЧСС в покое и после нагрузки, а также времени восстановления в ходе эксперимента у спортсменов через месяц после употребления воды из графенового фильтра (экспериментальная группа).

Таблица 5 Средние значения гемодинамических показателей и времени восстановления функций после нагрузки в ходе эксперимента

(экспериментальная группа)

| После Достоверность |                 |          |            |       |                    |        |  |  |  |
|---------------------|-----------------|----------|------------|-------|--------------------|--------|--|--|--|
|                     | До эксперимента |          | эксперимен | та    | различий           |        |  |  |  |
| Показатель          | Средние         | I        | Средние    | Ст.   | paositri ititi     |        |  |  |  |
|                     | значения        | Ст. откл | значения   | откл. | Т-тест             | Ф-тест |  |  |  |
| АДс п               |                 |          |            | -     |                    |        |  |  |  |
| (мм.рт.ст)          | 117,5           | 11,6     | 111,8      | 10,0  | <mark>0,015</mark> | 0,524  |  |  |  |
| АДд п               |                 |          |            |       |                    |        |  |  |  |
| (мм.рт.ст)          | 70,8            | 8,6      | 64,5       | 8,6   | <mark>0,012</mark> | 0,977  |  |  |  |
| ЧСС п (уд/мин)      | 63,6            | 8,1      | 55,6       | 9,6   | <0,001             | 0,472  |  |  |  |
| АДсн                |                 |          |            |       |                    |        |  |  |  |
| (мм.рт.ст)          | 172,5           | 17,3     | 159,0      | 14,0  | 0,001              | 0,368  |  |  |  |
| АДд н               |                 |          |            |       |                    |        |  |  |  |
| (мм.рт.ст)          | 50,3            | 32,2     | 54,0       | 23,1  | 0,264              | 0,155  |  |  |  |
| ЧСС н (уд/мин)      | 168,7           | 5,3      | 169,3      | 4,5   | 0,209              | 0,485  |  |  |  |
| МПК                 |                 |          |            |       |                    |        |  |  |  |
| (мл/мин/кг)         | 60,7            | 10,5     | 66,1       | 12,4  | <0,001             | 0,462  |  |  |  |
| T 4.7 ( )           |                 |          |            |       |                    |        |  |  |  |
| Т восст. АД (мин)   | 7,1             | 1,9      | 6,4        | 1,6   | 0,018              | 0,452  |  |  |  |
| Т восст.ЧСС         |                 |          |            |       |                    |        |  |  |  |
| (мин)               | 8,3             | 2,3      | 6,8        | 2,1   | 0,003              | 0,658  |  |  |  |

# Цветом выделены достоверные значения тестов

Как следует из таблицы 2 и Рисунка 4, в ходе эксперимента достоверно (Т-тест) снизились значения ЧСС и АД покоя, а также диастолическое давление после нагрузки, произошёл также достоверный рост МПК.



Рис.4 Динамика статистически *достоверных изменений* значений гемодинамических показателей в экспериментальной группе

Кроме того, время восстановления ЧСС статистически достоверно уменьшилось после нагрузки на 18%, а АД - на 10%.

Эти изменения указывают на экономизацию деятельности сердечно-сосудистой системы в покое, снижение гемодинамической стоимости физической нагрузки для испытуемых, укорочение восстановления после неё и рост аэробных способностей спортсмена.

Это, СВОЮ очередь, свидетельствует снижении физиологической цены выполнения физической нагрузки работоспособности спортсменов через увеличении месяц употребления воды из графенового фильтра.

В Таблице 6 представлены средние значения артериального давления, и ЧСС в покое и после нагрузки и времени восстановления уровня значений гемодинамических показателей в ходе эксперимента у контрольной группы.

Таблица 6 Средние значения гемодинамических показателей и времени восстановления функций после физической нагрузки в ходе эксперимента в контрольной группе

| Показатоли |                 | После        | Достоверность |
|------------|-----------------|--------------|---------------|
| Показатель | До эксперимента | эксперимента | различий      |

|             | Средние  | Ст.   | Средние  | Ст.   |        | Φ-    |
|-------------|----------|-------|----------|-------|--------|-------|
|             | значения | откл. | значения | откл. | Т-тест | тест  |
| АДс п       |          |       |          |       |        |       |
| (мм.рт.ст)  | 116,3    | 9,2   | 114,4    | 12,7  | 0,207  | 0,166 |
| АДд п       |          |       |          |       |        |       |
| (мм.рт.ст)  | 72,0     | 6,8   | 69,5     | 8,4   | 0,143  | 0,351 |
| ЧСС п       |          |       |          |       |        |       |
| (уд/мин)    | 58,2     | 10,0  | 58,6     | 11,0  | 0,448  | 0,689 |
| АДсн        |          |       |          |       |        |       |
| (мм.рт.ст)  | 173,3    | 16,6  | 171,9    | 20,7  | 0,397  | 0,346 |
| АДд н       |          |       |          |       |        |       |
| (мм.рт.ст)  | 63,0     | 20,9  | 67,6     | 15,9  | 0,234  | 0,245 |
| ЧСС н       |          |       |          |       |        |       |
| (уд/мин)    | 170,9    | 3,9   | 167,4    | 4,9   | 0,001  | 0,339 |
| МПК         |          |       |          |       |        |       |
| (мл/мин/кг) | 57,2     | 9,0   | 59,5     | 8,2   | 0,073  | 0,687 |
| Т восст. АД |          |       |          |       |        |       |
| (мин)       | 7,5      | 1,9   | 7,2      | 1,5   | 0,230  | 0,334 |
| Т восст.ЧСС |          |       |          |       |        |       |
| (мин)       | 8,5      | 2,8   | 8,2      | 1,9   | 0,298  | 0,092 |

Как следует из таблицы, в отличие от экспериментальной группы, в контрольной группе достоверные изменения произошли только по одному показателю — ЧСС при нагрузке, однако снижение было незначительным (с 170,9 уд/мин до 167,4 уд/мин).

образом, достоверные Таким имеются статистически доказательства роста экономизации работы аппарата работоспособности В покое, улучшения кровообращения И переносимости физических нагрузок через месяц после употребления воды из графенового фильтра.

#### 14.3. Метод ритмокардиографии

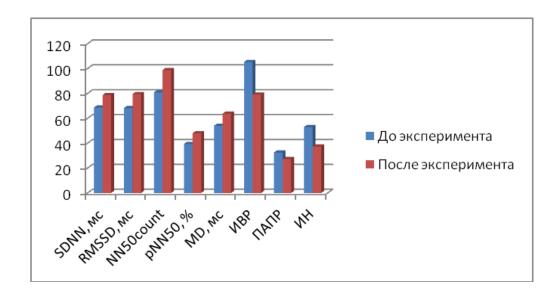

Ритмокардиография использовалась в данном эксперименте как индикатор состояния регулирующих систем и адаптационных реакций организма, а также с целью оценки реакции организма на стандартную физическую нагрузку. В Таблице 7 представлены средние значения показателей ритмограммы покоя до и после употребления спортсменами воды из графенового фильтра (экспериментальная группа).

Таблица 7 Динамика данных ритмограммы покоя в экспериментальной группе

|                  | Ритмогр  | амма  | Ритмогр  | амма  |                    |       |  |
|------------------|----------|-------|----------|-------|--------------------|-------|--|
|                  | покоя    |       | покоя п  | осле  | Достоверность      |       |  |
| Показатель       | экспери  | мента | экспери  | мента | разл               | ичий  |  |
|                  | Средние  | Ст.   | Средние  | Ст.   |                    | Φ-    |  |
|                  | значения | откл. | значения | откл. | Т-тест             | тест  |  |
| RRср., мс        |          |       |          |       |                    |       |  |
|                  | 1036,5   | 104,4 | 1082,6   | 114,7 | 0,006              | 0,685 |  |
| Мо, мс           | 1007,5   | 115,0 | 1057,5   | 118,4 | <0,001             | 0,901 |  |
| Амо, %           | 32,9     | 11,8  | 29,0     | 8,2   | 0,064              | 0,123 |  |
| RRмин., мс       |          |       |          |       |                    |       |  |
| TATAWINIT., IVIC | 825,6    | 122,6 | 866,0    | 124,2 | 0,007              | 0,954 |  |
| RRмакс.,         |          |       |          |       |                    |       |  |
| MC               | 1201,2   | 114,8 | 1285,2   | 150,0 | 0,002              | 0,252 |  |
| dX, мс           | 375,6    | 114,9 | 419,2    | 119,6 | 0,057              | 0,862 |  |
| CV, %            | 6,7      | 2,5   | 7,3      | 2,2   | 0,123              | 0,623 |  |
| SDNN, MC         | 00.7     | 00.0  | 70.7     | 07.4  | 0.040              | 0.050 |  |
|                  | 68,7     | 26,0  | 78,7     | 27,1  | <mark>0,048</mark> | 0,859 |  |
| RMSSD, мс        | 68,3     | 31,2  | 79,5     | 29,4  | 0,010              | 0,803 |  |
| NN50count        | 00.0     | 20 F  | 00.0     | 22.6  | 0.005              | 0.400 |  |
|                  | 80,9     | 39,5  | 98,8     | 33,6  | 0,025              | 0,488 |  |
| pNN50, %         | 39,4     | 19,2  | 48,0     | 16,4  | 0,025              | 0,496 |  |
| МD, мс           | 54,0     | 24,8  | 63,8     | 23,9  | 0,007              | 0,865 |  |
| ИВР              | 105,3    | 73,5  | 79,2     | 45,5  | 0,041              | 0,043 |  |
| ВПР              | 3,0      | 1,2   | 2,5      | 0,8   | 0,030              | 0,083 |  |
| ПАПР             | 32,6     | 12,4  | 27,3     | 8,0   | 0,023              | 0,059 |  |

| ИН       | 53,0   | 40,3   | 37,4   | 20,5   | 0,034 | 0,005 |
|----------|--------|--------|--------|--------|-------|-------|
| ПАРС     | 4,8    | 2,1    | 5,2    | 2,0    | 0,201 | 0,946 |
| HF, мс2  | 1346,9 | 1428,5 | 1552,1 | 908,5  | 0,215 | 0,055 |
| LF, мc2  | 1289,3 | 1302,8 | 1773,1 | 1544,1 | 0,120 | 0,466 |
| VLF, мc2 | 876,8  | 621,5  | 1636,7 | 1664,5 | 0,029 | 0,000 |
| ТР, мс2  | 3512,9 | 3029,7 | 4961,9 | 3716,5 | 0,056 | 0,381 |
| LF/HF    | 1,2    | 0,7    | 1,3    | 0,8    | 0,306 | 0,558 |
| LF, %    | 50,5   | 13,2   | 51,9   | 14,8   | 0,376 | 0,629 |
| HF, %    | 49,5   | 13,2   | 48,1   | 14,8   | 0,376 | 0,629 |

Как Таблицы 7, следует ИЗ ПО данным вариационной пульсометрии покоя до и после эксперимента у испытуемых были Т-тесту получены достоверные изменения ПО большинства показателей и двух показателей по Ф-тесту, а именно: рост значений показателей, отражающих вариабельность ритма сердца, как общую, так и обусловленную влиянием парасимпатической нервной системы, а также снижение комплексных показателей ритма сердца по Р.М. Баевскому (ИВР, ПАПР, ИН), отражающих снижение симпатической активности, усиление парасимпатических влияний и централизации ритма сердца (Рис. 5).



p<0,05 Puc. 5 Динамика показателей ритмограммы покоя экспериментальной группы, по которым получены достоверные изменения.

Показано (Питкевич Ю.Э., 2011), что с ростом спортивной формы растёт вариационный размах RR, Mo, SDNN, а ИН, ИВР и ПАПР значительно уменьшаются.

Это, СВОЮ об увеличении В очередь, свидетельствует функциональной адаптационных (резервных) активности, возможностей организма И соревновательной надёжности спортсменов.

Кроме того, в ходе употребления воды спортсменами отмечалось снижение значения вегетативного показателя ритма (ВПР) в среднем с 3,0 до 2,5 у.е. (р<0,05). Ранее нами было показано (Гаврилова, Е.А., 2010), что по данным ВПР можно прогнозировать аэробные способности спортсменов, а именно: при значениях ВПР менее 2,6 у.е. в покое отмечается рост МПК выше 60 мл/мин/кг, что и было показано выше. Рост МПК в процессе эксперимента составил 8,9% в среднем с 60,7 до 66,1 мл/мин/кг (р<0,001).

В контрольной группе подобных изменений на ритмограмме покоя не только не отмечалось, но и были изменения, направленные в обратную сторону (Таблица 8).

Таблица 8 Динамика данных ритмограммы покоя в экспериментальной группе

|             | Ритмогр      | тмограмма Ритмогра |             | Ритмограмма  |               |          |  |
|-------------|--------------|--------------------|-------------|--------------|---------------|----------|--|
|             | покоя до     |                    | покоя после |              | Достоверность |          |  |
| Показатель  | эксперимента |                    | экспери     | эксперимента |               | различий |  |
|             | Средние      | Ст.                | Средние     | Ст.          |               |          |  |
|             | значения     | откл.              | значения    | откл.        | Т-тест        | Ф-тест   |  |
| RRср., мс   |              |                    |             |              |               |          |  |
| TXIXCP., MC | 1077,6       | 132,0              | 1070,6      | 126,6        | 0,416         | 0,858    |  |
| Мо, мс      | 1065,0       | 153,1              | 1045,0      | 159,7        | 0,337         | 0,857    |  |
| Амо, %      | 26,6         | 11,4               | 26,2        | 11,9         | 0,415         | 0,848    |  |
| RRмин., мс  |              |                    |             |              |               |          |  |
| KRIWIH., MC | 838,6        | 97,5               | 846,4       | 101,0        | 0,351         | 0,878    |  |
| RRмакс.,    |              |                    |             |              |               |          |  |
| MC          | 1302,5       | 163,0              | 1302,6      | 199,7        | 0,499         | 0,383    |  |
| dX, мс      | 463,8        | 143,6              | 456,2       | 174,4        | 0,401         | 0,405    |  |
| CV, %       | 8,6          | 3,0                | 8,9         | 4,0          | 0,345         | 0,219    |  |
| SDNN, мс    |              |                    |             |              |               |          |  |
| SDIVIN, MC  | 93,7         | 36,6               | 96,3        | 46,7         | 0,383         | 0,294    |  |

| RMSSD, мс | 94,2   | 34,4   | 98,3   | 40,1   | 0,323 | 0,510 |
|-----------|--------|--------|--------|--------|-------|-------|
| NN50count | 104,3  | 30,6   | 104,1  | 42,4   | 0,493 | 0,165 |
| pNN50, %  | 51,3   | 15,0   | 50,6   | 20,5   | 0,436 | 0,180 |
| МD, мс    | 75,1   | 28,0   | 78,9   | 30,4   | 0,298 | 0,726 |
| ИВР       | 68,1   | 47,5   | 89,8   | 107,8  | 0,125 | 0,001 |
| ВПР       | 2,3    | 1,1    | 2,8    | 2,2    | 0,140 | 0,003 |
| ПАПР      | 25,5   | 13,5   | 25,8   | 15,0   | 0,465 | 0,648 |
| ИН        | 34,0   | 27,8   | 47,5   | 64,0   | 0,120 | 0,001 |
| ПАРС      | 5,8    | 2,6    | 6,0    | 1,9    | 0,364 | 0,224 |
| HF, мс2   | 2123,1 | 1496,8 | 2223,5 | 1408,1 | 0,370 | 0,793 |
| LF, мc2   | 3056,0 | 3053,6 | 3163,2 | 3752,6 | 0,446 | 0,377 |
| VLF, мc2  | 2479,1 | 2892,3 | 3098,3 | 4493,0 | 0,248 | 0,062 |
| ТР, мс2   | 7658,1 | 6125,6 | 8485,5 | 8392,7 | 0,315 | 0,179 |
| LF/HF     | 1,6    | 1,2    | 1,2    | 1,1    | 0,151 | 0,628 |
| LF, %     | 54,2   | 17,7   | 47,5   | 18,5   | 0,091 | 0,862 |
| HF, %     | 45,8   | 17,7   | 52,6   | 18,4   | 0,088 | 0,869 |

Так отмечается статистически достоверное возрастание (по Фтесту) трех комплексных показателей по Р.М. Баевскому (ИВР, ВПР, ИН), отражающих усиление симпатической активности вегетативной нервной системы и централизацию управления ритмом сердца, p<0,01 (Рис.6).

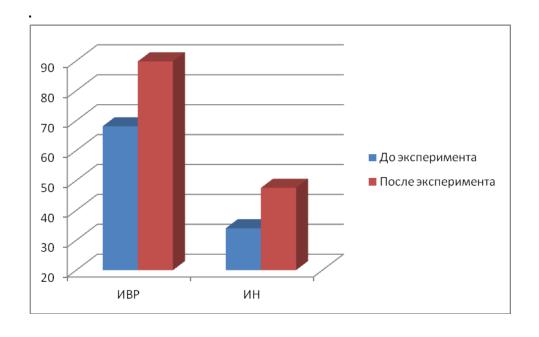



Рис.6 Динамика показателей ритмограммы покоя контрольной группы, по которым получены статистически достоверные изменения.

В противоположность экспериментальной группе, ВПР увеличился в среднем с 2,3 до в 2,8 у.е. (p<0,01).

Такие изменения свидетельствуют о снижении функциональной активности и адаптационных (резервных) возможностях организма спортсменов контрольной группы. Иначе говоря, показатель спортивной формы у лиц контрольной группы в целом снизился.

Второй этап эксперимента включал запись ритмограммы после выполнения стандартной велоэргометрической нагрузки.

В Таблице 9 показана динамика показателей ритмограммы после выполнения нагрузочного теста.

Таблица 9 Динамика данных ритмограммы при нагрузке в экспериментальной группе

|            | DIATMOED        | 014140 | DIATMOTES       | NAMA CIDIA     |        |               |  |
|------------|-----------------|--------|-----------------|----------------|--------|---------------|--|
|            | Ритмограмма     |        | Ритмограмма при |                | _      |               |  |
|            | при нагрузке до |        | нагрузке        | нагрузке после |        | Достоверность |  |
| Показатель | эксперии        | иента  | экспери         | эксперимента   |        | различий      |  |
|            | Средние         | Ст.    | Средние         | Ст.            |        |               |  |
|            | значения        | откл.  | значения        | откл.          | Т-тест | Ф-тест        |  |
| DDon 40    |                 |        |                 |                |        |               |  |
| RRср., мс  | 772,2           | 82,8   | 771,5           | 94,4           | 0,489  | 0,573         |  |
| Мо, мс     | 737,5           | 80,9   | 705,5           | 171,1          | 0,214  | 0,002         |  |
| Амо, %     | 38,8            | 14,3   | 39,5            | 16,3           | 0,426  | 0,571         |  |
| DDMMI MC   |                 |        |                 |                |        |               |  |
| RRмин., мс | 640,8           | 45,8   | 658,6           | 55,8           | 0,104  | 0,397         |  |
| RRмакс.,   |                 |        |                 |                |        |               |  |
| МС         | 939,6           | 134,0  | 935,8           | 170,0          | 0,463  | 0,308         |  |
| dX, мс     | 298,8           | 123,6  | 277,2           | 136,0          | 0,265  | 0,682         |  |
| CV, %      | 7,0             | 2,8    | 6,5             | 3,0            | 0,261  | 0,799         |  |
| SDNN, MC   |                 |        |                 |                |        |               |  |
| SDIVIV, MC | 55,7            | 27,4   | 52,3            | 29,9           | 0,334  | 0,698         |  |
| RMSSD, мс  |                 |        |                 |                |        |               |  |
|            | 45,1            | 28,7   | 42,5            | 29,8           | 0,375  | 0,874         |  |
| NN50count  |                 |        |                 |                |        |               |  |
| tooodant   | 47,6            | 44,0   | 42,7            | 39,5           | 0,340  | 0,641         |  |

|          | •      |       |        |        |       | 1     |
|----------|--------|-------|--------|--------|-------|-------|
| pNN50, % | 22,0   | 19,7  | 20,7   | 19,2   | 0,406 | 0,913 |
| МD, мс   | 35,4   | 23,0  | 33,1   | 22,0   | 0,355 | 0,850 |
| ИВР      | 180,0  | 145,1 | 221,5  | 200,1  | 0,089 | 0,170 |
| ВПР      | 5,8    | 3,4   | 7,0    | 5,6    | 0,097 | 0,337 |
| ПАПР     | 53,8   | 23,3  | 57,2   | 25,2   | 0,291 | 0,733 |
| ИН       | 128,7  | 109,8 | 166,1  | 173,3  | 0,085 | 0,053 |
| ПАРС     | 4,0    | 1,3   | 4,3    | 1,8    | 0,244 | 0,175 |
| HF, мс2  | 759,8  | 896,8 | 839,4  | 1099,1 | 0,385 | 0,383 |
| LF, мc2  |        | 1226, |        |        |       |       |
| LF, MCZ  | 1038,0 | 9     | 1242,5 | 2004,9 | 0,335 | 0,388 |
| VLF, мc2 | 795,6  | 614,0 | 752,7  | 891,1  | 0,432 | 0,113 |
| Сумма,   |        | 2430, |        |        |       |       |
| мс2      | 2593,3 | 9     | 2834,5 | 3833,1 | 0,401 | 0,054 |
| LF/HF    | 1,8    | 1,2   | 2,0    | 1,6    | 0,318 | 0,253 |
| LF, %    | 59,2   | 15,0  | 59,0   | 18,1   | 0,482 | 0,421 |
| HF, %    | 40,8   | 15,0  | 41,0   | 18,1   | 0,482 | 0,421 |

Как видно из Таблицы 9, после нагрузки в контрольной группе достоверных изменений показателей фактически не отмечалось. Однако, общая тенденция после нагрузки свидетельствовала о росте мобилизации организма спортсменов экспериментальной группы, в основном, за счет активизации деятельности симпатической нервной системы - LF (Рис .6).

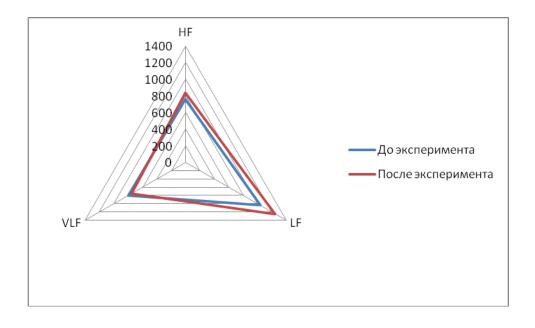



Рис. 6 Динамика спектральных составляющих ритмограммы при нагрузке в экспериментальной группе

Достоверным было лишь снижение (по Ф-тесту) значения моды после эксперимента, что также отражает более высокий уровень мобилизации функций организма и соревновательной готовности спортсменов после употребления воды из графенового фильтра.

В то же время, в контрольной группе изменения были противоположными (в том числе достоверными) (Таблица 10).

Таблица 10 Динамика данных ритмограммы нагрузки в контрольной группе

|               | Ритмограмма     |       | Ритмограмма при |              |                    |          |
|---------------|-----------------|-------|-----------------|--------------|--------------------|----------|
| Показатель    | при нагрузке до |       | нагрузке после  |              | Достоверность      |          |
|               | эксперим        |       |                 | эксперимента |                    | различий |
|               | Средние         | Ст.   | Средние         | Ст.          | T-                 |          |
|               | значения        | откл. | значения        | откл.        | тест               | Ф-тест   |
| RRср., мс     |                 | 112,  |                 |              |                    |          |
| TATAOP., IVIC | 752,7           | 5     | 794,5           | 105,2        | <mark>0,005</mark> | 0,775    |
| Мо, мс        |                 | 182,  |                 |              |                    |          |
| ,             | 695,0           | 0     | 752,5           | 105,7        | 0,058              | 0,022    |
| Амо, %        | 45,8            | 19,7  | 41,5            | 16,5         | 0,088              | 0,439    |
| RRмин., мс    |                 |       |                 |              |                    |          |
|               | 641,8           | 61,9  | 670,6           | 59,1         | <mark>0,013</mark> | 0,838    |
| RRмакс.,      |                 | 182,  |                 |              |                    |          |
| MC            | 910,6           | 7     | 966,4           | 171,3        | 0,053              | 0,782    |
| dX, мс        |                 | 143,  |                 |              |                    | . –      |
|               | 268,8           | 7     | 295,3           | 155,0        | 0,182              | 0,744    |
| CV, %         | 6,3             | 3,1   | 7,2             | 3,9          | 0,127              | 0,305    |
| SDNN, MC      | 50,0            | 32,8  | 59,3            | 38,8         | 0,086              | 0,471    |
| DM00D         | ,               | ,     | ,               | •            | •                  | ,        |
| RMSSD, мс     | 41,2            | 33,8  | 48,2            | 37,4         | 0,091              | 0,659    |
| NN50count     | 35,1            | 40,8  | 43,2            | 42,7         | 0,100              | 0,843    |
|               | 00,1            | .0,0  | 10,2            | ,,,          | 3,.00              | 0,0.0    |
| pNN50, %      | 17,1            | 20,0  | 21,1            | 21,0         | 0,105              | 0,846    |
| МD, мс        | 31,7            | 25,0  | 37,8            | 28,3         | 0,072              | 0,594    |
| ИВР           |                 | 264,  |                 |              |                    |          |
| וטוי          | 278,3           | 8     | 232,1           | 272,7        | 0,195              | 0,899    |

| DED       | 7.4    | 4.0  | C 4    | 4.0    | 0.4.47             | 0.004  |
|-----------|--------|------|--------|--------|--------------------|--------|
| ВПР       | 7,4    | 4,8  | 6,4    | 4,8    | 0,147              | 0,981  |
| ПАПР      | 66,9   | 34,3 | 57,1   | 26,3   | <mark>0,043</mark> | 0,255  |
| ИН        |        | 209, |        |        |                    |        |
| ИП        | 210,0  | 7    | 164,2  | 196,6  | 0,144              | 0,781  |
| ПАРС      | 4,7    | 2,1  | 4,0    | 2,1    | 0,024              | 0,984  |
| HF, мс2   |        | 1861 |        |        |                    |        |
| HF, MCZ   | 928,9  | ,2   | 880,5  | 1253,8 | 0,411              | 0,093  |
| LF, мc2   |        | 2570 |        |        |                    |        |
| LI , MCZ  | 1341,4 | ,5   | 1557,9 | 3416,3 | 0,235              | 0,224  |
| \/  E_Mc2 |        | 397, |        |        |                    |        |
| VLF, мc2  | 514,5  | 6    | 1100,6 | 1732,2 | 0,075              | <0,001 |
| Сумма,    |        | 4620 |        |        |                    |        |
| мс2       | 2784,7 | ,4   | 3539,0 | 5402,4 | 0,113              | 0,502  |
| LF/HF     | 1,8    | 1,3  | 1,8    | 2,1    | 0,463              | 0,037  |
| LF, %     | 56,9   | 18,4 | 52,0   | 20,6   | 0,173              | 0,629  |
| HF, %     | 43,1   | 18,4 | 48,0   | 20,6   | 0,173              | 0,629  |

Как видно из таблицы, активизация функциональных резервов после эксперимента в контрольной группе осуществлялась в большей степени за счет гуморальной регуляции - VLF (Рис.7).

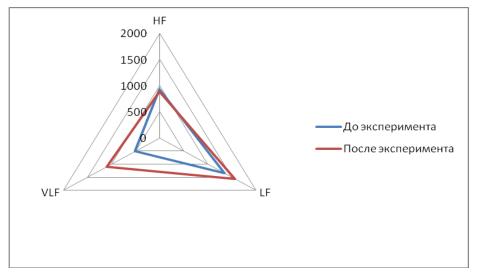



Рис.7 Динамика спектральных составляющих ритмограммы при нагрузке в контрольной группе

Это отражает меньшую степень мобилизации функций организма спортсмена на стандартную велоэргометрическую нагрузку, снижение функциональных резервов. Это может быть связано с таким явлением как гиперадапация спортсменов контрольной группы.

## 14.3. Методы психодиагностики

Исследование психологического статуса осуществлялось по двум методикам: тесты POMS и Спилбергера-Ханина. Тест POMS проводился дважды — до и после физической нагрузки. Тест Спилбергера-Ханина — однократно.

Надо отметить, что достоверных изменений после эксперимента ни в одной группе в основном выявлено не было (кроме фактора психической силы после нагрузки в экспериментальной группе).

Однако, тенденции в динамике психологического статуса по тесту POMS в группах были противоположными. Как видно на Рис. 8 до нагрузки в процессе эксперимента суммарный интегральный показатель психологического профиля (S) в экспериментальной группе имел тенденцию к оптимизации. Другие показатели изменились мало, но также в сторону оптимизации.

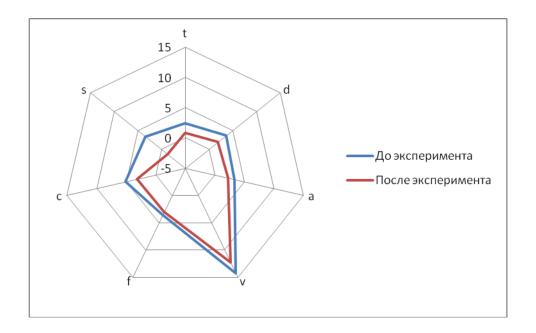



Рис.8 Динамика психологического профиля POMS в экспериментальной группе в покое

В контрольной группе в процессе эксперимента снизилось значение показателя психической силы (V), увеличилось значение показателей депрессии, усталости и понизилось значение интегрального показателя S (Рис.9).

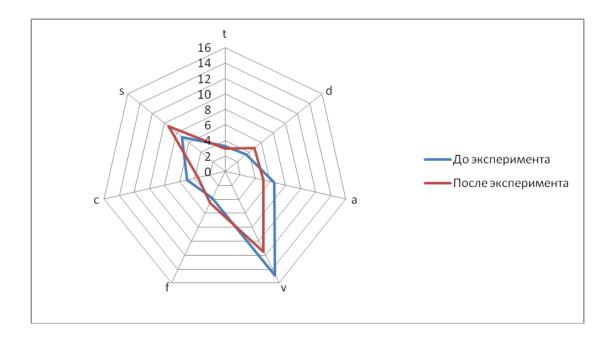



Рис.9 Динамика психологического профиля POMS в контрольной группе в покое

После нагрузки в экспериментальной группе отмечается положительная динамика в плане достоверного увеличения значения показателя психической силы – V (p<0,001) и снижения суммарного показателя S, что является идеальным для спортсмена (Puc.10).

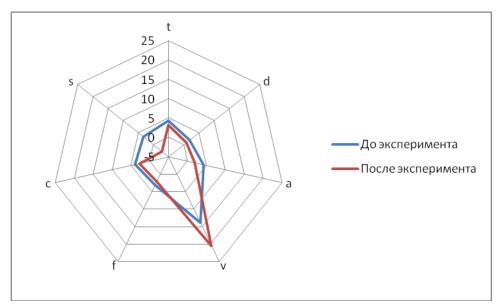



Рис.10 Динамика психологического профиля POMS в экспериментальной группе после нагрузки

В контрольной группе после нагрузки никаких изменений в профиле фактически не произошло (Рис.11).

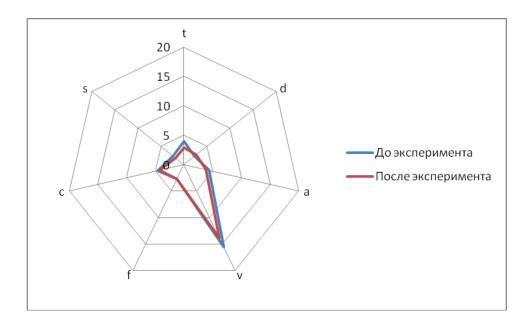



Рис.11 Динамика психологического профиля POMS в экспериментальной группе после нагрузки

По данным теста на тревожность (Спилбергера-Ханина) выраженных изменений в двух группах получено не было (Таблица 11).

Таблица 11 Динамика данных теста Спилбергера-Ханина в двух группах

| Группа             | Cp.   | Ст.   | Cp.   | Ст.  | T-    | Φ-    |
|--------------------|-------|-------|-------|------|-------|-------|
|                    | знач. | откл. | знач. | ткл. | тест  | тест  |
| Экспериментальная  | 21,2  | 3,3   | 19,9  | 3,2  | 0,066 | 0,899 |
| группа             |       |       |       |      |       |       |
| Контрольная группа | 20,1  | 3,7   | 19,3  | 3,7  | 0,042 | 0,054 |

В обеих группах отмечалось незначительное, хотя и значимое в контрольной группе снижение тревожности.

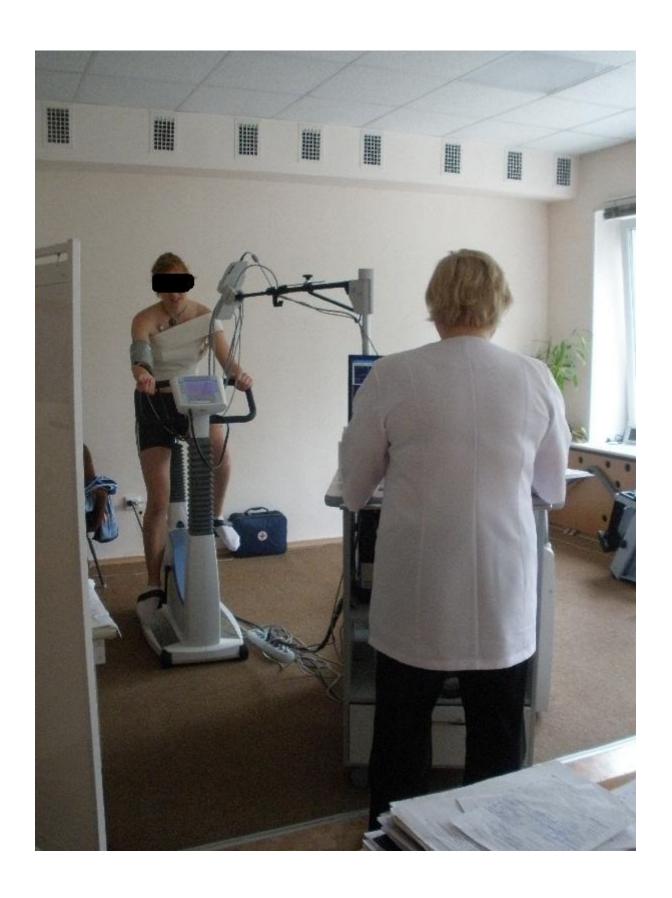
## 15. Заключения

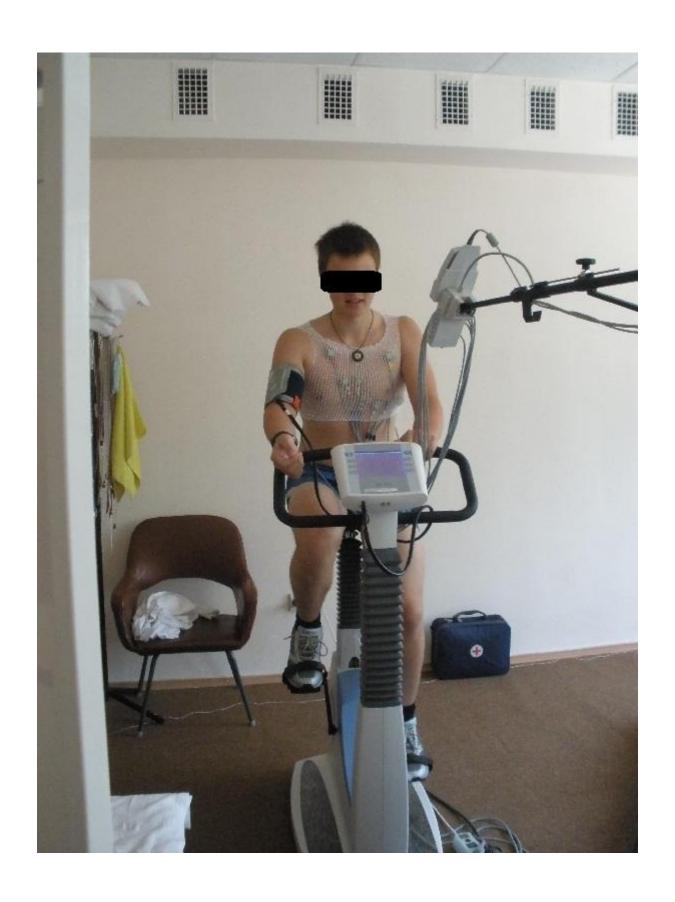
- 1. Проведенный эксперимент что через показал, месяц употребления графенового фильтра воды И3 достоверно снизились значения ЧСС и артериального давления в покое, а также диастолического давления после нагрузки. Произошёл также достоверный рост МПК на 9%, а время восстановления ЧСС достоверно уменьшилось после нагрузки 18%, артериального давления - на 10%. Таким образом, получены статистически достоверные доказательства роста работоспособности, экономизации работы аппарата кровообращения спортсменов покое улучшения И переносимости физических нагрузок.
- показателей, 2. Произошел рост значений отражающих вариабельность ритма сердца, как общую, так и обусловленную парасимпатической нервной системы. влиянием комплексных показателей ритма сердца по Р.М. снижение Баевскому, отражающих снижение симпатической активности, усиление парасимпатических влияний и централизации ритма сердца. Это свидетельствовало об увеличении функциональной (резервных) возможностей активности, адаптационных организма и соревновательной надёжности спортсменов.
- 3. В ответ на нагрузку у испытуемых экспериментальной группы отмечался более высокий уровень соревновательной готовности, психической силы и мобилизации функций организма.
- 4. Полученные ГРВ методом данные свидетельствуют энергетических параметров сохранении спортсменами экспериментальной группы в сравнении со снижением значений соответствующих параметров У спортсменов контрольной группы. Снижение значений параметров связано с включением спортсменов в активный тренировочный цикл и реакцией организма на нагрузку.

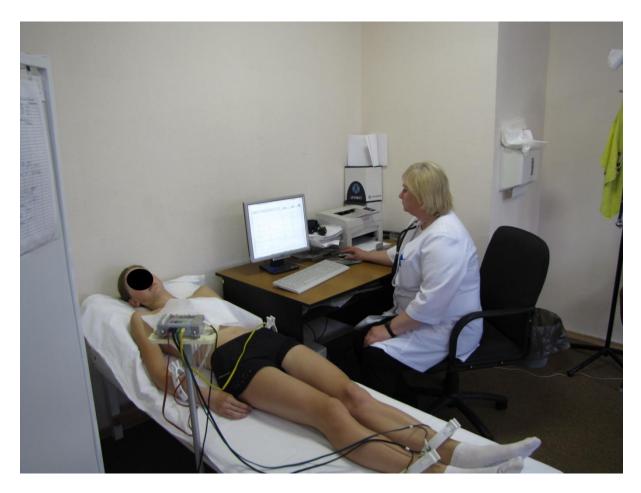
5. Анализ энергетического состояния отдельных систем и органов показал наличие существенного увеличения значений ГРВпараметров после месяца употребления активированной воды из графенового фильтра у спортсменов экспериментальной группы по сравнению с данными контрольной группы. Произошло существенное увеличение значений энергетического потенциала, относящегося органов систем К ряду И спортсменов экспериментальной группы:

> кардио-васкулярная система сердце сосуды грудные железы гипоталамус эпифиз гипофиз поджелудочная железа надпочечники мочеполовая система позвоночник сигмовидная кишка прямая кишка слепая кишка восходящая кишка поперечно-ободочная кишка Печень поджелудочная железа Аппендикс Почки

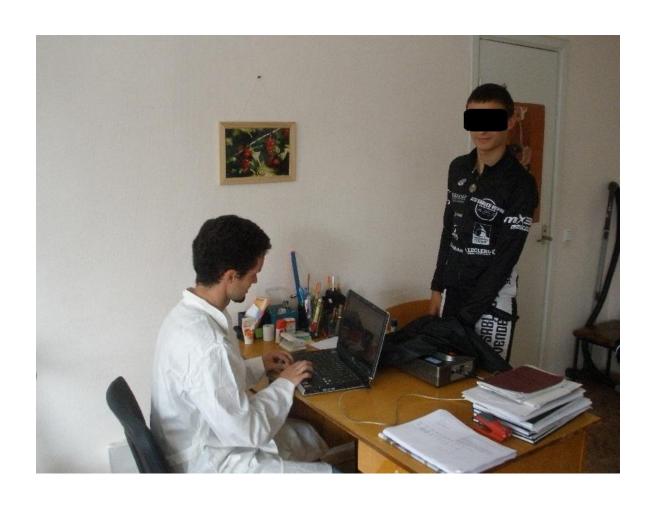
6. Спортсмены отмечали улучшение общего самочувствия и настроения.


## Выводы:


- 1. При использовании спортсменами в качестве питьевой воды, обработанной в графеновом фильтре, отмечается достоверный рост аэробных возможностей, скорости восстановления уровня значений гемодинамических показателей в остром тесте с физической нагрузкой. Это свидетельствует об увеличении функциональной активности, адаптационных (резервных) возможностей организма и соревновательной надёжности спортсменов.
- 2. В ответ на нагрузку у испытуемых экспериментальной группы отмечался более высокий уровень соревновательной готовности, фактора психической силы и происходила мобилизация функций организма
- 3. Таким образом, результаты эксперимента подтвердили эффективность использования воды, обработанной в графеновом фильтре, в плане повышения работоспособности, соревновательной готовности, психологической устойчивости, адаптационного потенциала и ускорения восстановления после физических нагрузок.
- 4. После анализа отчета можно сделать выводы, что эксперименты проведены в соответствии с протоколом CONSORT, все результаты и заключения следует признать валидными.


## Список литературы

- 1. Коротков К.Г. Эффект Кирлиан. СПб., 1995, 218 с.
- 2. Коротков К.Г. Основы ГРВ биоэлектрографии. СПб, Изд. СПбГИТМО, 2001. 360c.
- 3. Коротков К.Г. Принципы анализа ГРВ биоэлектрографии. СПб. Изд. «Реноме», 2007, 286 с.
- 4. Коротков К.Г., Крылов Б.А. Работа с прибором ГРВ Камера. Обработка результатов измерений в программах комплекса ГРВ Электрографии. Часть 2. Программное обеспечение комплекса.// Методические указания к лаб.раб./ СПбГИТМО. СПб. 2003. 20с.
- 5. Дроздов Д.А., Шацилло О.И. анализ ГРВ биоэлектрографических изображений с позиций вегетологии. Труды международной конференции «Наука, Информация, Сознание», СПб, 2005, СС. 99-104.
- 6. Полушин Ю.С., Струков Е.Ю., Широков Д.М., Коротков К.Г. Возможности метода газоразрядной визуализации в оценке операционного стресса у больных с абдоминальной хирургической патологией // Вестн. Хирургии. 2002. Т.161, №5. С.118.
- 7. Струков Е.Ю. Возможности метода газоразрядной визуализации в оценке функционального состояния организма в периоперационном периоде. Автореферат диссертации на соискание ученой степени кандидата медицинских наук. С-Петербург, ВМедА, 2003
- Александрова Р.А., Шульга А.Ф, Петровский 8. ИД, др. Результаты лечения больных с мультиморбидной патологией с воздействий. Ученые Записки СПб малых ПОМОЩЬЮ И.П. государственного медицинского университета ИМ. акад. Павлова. т.ІХ, № 4, 2002, сс. 75-78
- 9. Бундзен П.В, Коротков К.Г., Макаренко А.И. Результаты и перспективы использования технологии квантовой биофизики в подготовке высококвалифицированных спортсменов. Теория и практика физической культуры. 2003, 3:26-43
- 10. Бундзен П.В, Коротков К.Г., Короткова А.К., и др. Психофизиологические корреляты успешности соревновательной деятельности спортсменов Олимпийского резерва. Физиология человека. 2005, т. 31, № 3, сс. 1-9.


- 11. Коротков К.Г., Крыжановский Э.В., Филатов С.И., Филиппосьянц Ю.Р. Метод выявления лиц, склонных к совершению противоправных действий. М.: ГУ НПО «Специальная техника и связь» МВД России, 2005. 32 с.
- 12. Korotkov K., Krizhanovsky E., Borisova M., et.al. The Research of the Time Dynamics of the Gas Discharge Around Drops of Liquids. J of Applied Physics. 2004, v. 95, N 7, pp. 3334-3338.
- 13. Прияткин Н.С., Коротков К.Г., , Куземкин В.А., и др. Метод ГРВ биоэлектрографии для исследования влияния пахучих веществ на психофизиологическое состояние человека. Приборостроение. Т. 49, № 2, 2006, сс. 37-43.
- 14. Гаврилова Е.А. Особенности вегетативной регуляции ритма сердца у высококвалифицированных лыжников с различным уровнем аэробных способностей /Материалы Международной научнопрактической конференции «Инновационные технологии в системе подготовки спортивного резерва».- Санкт-Петербург, ФГУ «СПб НИИ ФК», 2010.- С.18-20.
- 15. Миронова Т.Ф., Миронов В.А., Калмыкова А.В., Давыдова Е.В., Шадрина И.М. Ритмокардиография для анализа волновой вариабельности синосового ритма //<u>Российский кардиологический журнал</u>. 2007. № 5. С. 41-45.
- 16. Питкевич Ю.Э. Функциональное состояние спортсменов по показателям вариабельности сердечного ритма.- Автореф. канд. дисс. к.м.н.- Белоруссия, Минск.-2011.- 24 с.
- 17. Ханин Ю.Л. Русский вариант соревновательной личностной тревожности //Стресс и тревога в спорте. Международный сборник научных статей. М. Ф. и с.- 1983. -С. 146- 156.
- 18. Mc Nair D.D., Lorr M., Droppleman L.F. Edits manual for the profile of mood staits. SanDiego. California. 1992.- 15 p.

